

□ Class 11 – Mathematics

Chapter: Principle of Mathematical Induction

□ 1. Introduction

Mathematical Induction is a method of mathematical proof used to prove that a statement is true for all natural numbers.

□ 2. Need for Induction

Sometimes, verifying statements for a few values is not enough. We need a way to prove it holds true for all $n \in \mathbb{N}$. That's where induction is used.

□ 3. Steps of Mathematical Induction

To prove a statement $P(n)P(n)P(n)$ is true for all $n \in \mathbb{N}$:

Step 1: Base Case

Prove $P(1)P(1)P(1)$ is true.

This step confirms the statement holds for the first natural number.

Step 2: Inductive Hypothesis

Assume $P(k)P(k)P(k)$ is true for some arbitrary natural number k .

This assumption is not proof, it's just a step.

Step 3: Inductive Step

Prove that $P(k+1)P(k+1)P(k+1)$ is true using the assumption that $P(k)P(k)P(k)$ is true.

If successful, it shows $P(n)P(n)P(n)$ is true for all $n \in \mathbb{N}$.

□ 4. Example

Prove that:

$$1+2+3+\dots+n = n(n+1)/2$$

□ Base Case:

For $n=1$ $1 = 1$

$$\text{LHS} = 1, \text{ RHS} = 1(1+1)/2 = 1$$

□ Inductive Hypothesis:

Assume true for $n=k$

$$1+2+\dots+k = k(k+1)/2$$

□ Inductive Step:

Add $k+1$ to both sides:

$$1+2+\dots+k+(k+1) = k(k+1)/2 + (k+1)$$

Simplify RHS:

$$=k(k+1)+2(k+1)2=(k+1)(k+2)2=\frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k+2)}{2}=2k(k+1)+2(k+1)=2(k+1)(k+2)$$

Which is the formula for $P(k+1)P(k+1)P(k+1)$, hence proved.

□ 5. Applications

- Proving divisibility statements
- Sum of series
- Inequalities involving natural numbers

□ 6. Important Points

- Works only for natural numbers
- Always verify the base case
- Carefully use the inductive hypothesis in the inductive step
- Final conclusion: The statement holds for all $n \in \mathbb{N}$